Annualized Agricultural Non - Point Source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment
نویسنده
چکیده
The Annualized Agricultural Non-Point Source (AnnAGNPS) model has been developed to quantify watershed response to agricultural management practices. The objective of this study was to identify critical areas where conservation practices could be implemented and to predict their impact on Beasley Lake water quality in the Mississippi Delta using AnnAGNPS. Model evaluation was first performed by comparing the observed runoff and sediment from a US Geological Survey gauging station draining 7 ha (17 ac) of Beasley Lake watershed with the AnnAGNPS simulated runoff and sediment. The model demonstrated satisfactory capability in simulating runoff and sediment at an event scale. Without calibration, the Nash-Sutcliffe coefficient of efficiency was 0.81 for runoff and 0.54 for sediment; the relative error was 0.1 for runoff and 0.18 for sediment, and the Willmott index of agreement was 0.94 for runoff and 0.80 for sediment. The quantity of water and sediment produced from each field within the Beasley Lake watershed, quantity of water and sediment reaching Beasley Lake, and the potential impact of various USDA Natural Resources Conservation Service conservation programs on water quality were then simulated. High sedimentproducing areas for nonpoint source pollution control were identified where sediment loads could be reduced by 15% to 77% using conservation practices. Simulations predicted that converting all cropland to no-till soybeans (Glycine max [L.] Merr.) would reduce sediment load by 77% whereas no-till cotton (Gossypium hirsutum L.) would reduce it 64%. The approach taken in this study could be used elsewhere in applying AnnAGNPS to ungauged watersheds or watersheds with limited field observations for conservation program planning or evaluation.
منابع مشابه
An Integrated GIS-AnnAGNPS Modeling Interface for Non-Point Source Pollution Assessment
AnnAGNPS (Annualized AGricultural Non-point Source), a continuous simulation and distributed pollution model, is widely applied in evaluating non-point source pollution and watershed management practices. However, the complexity of required input data and modeling procedure keep it from being an efficient modeling tool. An integrated GIS interface was developed to facilitate organizing and prep...
متن کاملDevelopment and Application of Gully Erosion Components within the Usda Annagnps Watershed Model for Precision Conservation
A watershed scale assessment of the effect of conservation practices on the environment is critical when recommending conservation management practices to agricultural producers. The identification of all sources of sediment and subsequent tracking of the movement of sediment downstream is a necessary part of this assessment including the often overlooked contributions from gully erosion source...
متن کاملInfluence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes.
The Mississippi Delta Management Systems Evaluation Area (MD-MSEA) project was established in 1994 in three small watersheds (202 to 1,497 ha) that drain into oxbow lakes (Beasley, Deep Hollow, and Thighman). The primary research objective was to assess the implications of management practices on water quality. Monthly monitoring of herbicide concentrations in lake water was conducted from 2000...
متن کاملPhosphorus losses from agricultural watersheds in the Mississippi Delta.
Phosphorus (P) loss from agricultural fields is of environmental concern because of its potential impact on water quality in streams and lakes. The Mississippi Delta has long been known for its fish productivity and recreational value, but high levels of P in fresh water can lead to algal blooms that have many detrimental effects on natural ecosystems. Algal blooms interfere with recreational a...
متن کاملComparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas
This study was conducted under the USDA-Conservation Effects Assessment Project (CEAP) in the Cheney Lake watershed in south-central Kansas. The Cheney Lake watershed has been identified as ‘impaired waters’ under Section 303(d) of the Federal Clean Water Act for sediments and total phosphorus. The USDA-CEAP seeks to quantify environmental benefits of conservation programmes on water quality by...
متن کامل